Complete set of values of 'a' such that x2−x1−ax attains all real values is :
[1, ∞]
Let y=( x2 –x)/(1-ax), x∈R
=> x2-x = y-ayx =>x2+(ay-1)x-y=0
Since y attains all values in R for real x,
D=(ay−1)2 +4y ⩾ 0 ∀ y ∈ R
=> a2y2 +(4-2a)y+1 ⩾0 ∀ y ∈ R
=> 4(2−a)2 -4a2 ⩽0
=> 4-4a+a2 -a2 ⩽0
=> a⩾1
Hence a∈[1,∞)