Complete set of values of a such that x2−x1−ax attains all real values is
[1, 4]
[0, 4]
[1, ∞)
[4, ∞)
Let y=x2−x1−ax ⇒ x2−x=y−axy⇒ x2+x(ay−1)−y=0 Since xϵR⇒Δ≥0 (ay−1)2+4y≥0 ⇒a2y2+2y(2−a)+1≥0yϵR ⇒a>0, 4(2−a)2−4a2≤0 ⇒4+a2−4a−a2≤0 ⇒1≤a∴ aϵ[1, ∞)
Complete set of values of 'a' such that x2−x1−ax attains all real values is :