Complete set of values of x satisfying cos2x > |sinx|, x ∈(−π2,π) is
(−π6,π)
(−π6,π6)∪(5π6,π)
(π6,π2)∪(5π6,π)
(−π6,5π6)
If cos2x=sinx ⇒2sin2x+sinx−1=0∴sinx=12,−1 But sinx≠−1 [as cos2x>1 is incorrect] ∴sinx=12 ⇒x=π6,5π6.
∴ Solution set is (−π6,π6)∪(5π6,π)
If the product of the roots of equation 2x2 + ax + 4 sin a = 0 is 1, then roots will be imaginary if :