The correct option is C [π6,π4]∪[3π4,5π6]
x∈(0,π)⇒3x∈(0,3π)
For the inequality to be defined,
sinx>0 and sin3x>0
⇒x∈(0,π3)∪(2π3,π) ⋯(1)
1+log2sinx+log2sin3x≥0
⇒log2(2sinxsin3x)≥0
⇒2sinxsin3x≥1
⇒2sinx(3sinx−4sin3x)≥1
⇒8sin4x−6sin2x+1≤0
Let sin2x=t
Then 8t2−6t+1≤0
⇒(t−12)(t−14)≤0
⇒14≤t≤12
⇒14≤sin2x≤12
⇒12≤sinx≤1√2
⇒x∈[π6,π4]∪[3π4,5π6] ⋯(2)
From (1) and (2),
x∈[π6,π4]∪[3π4,5π6]