Complete the table
first expression second expression product(i)ab+c+d−−−(ii)x+y−55xy−−−(iii)p6p2−7p+5−−−(iv)4p2q2p2−q2−−−(v)a+b+cabc−−−−
(i) Given, a×(b+c+d)=ab+ac+ad
(ii) Given, (x+y−5)×5xy=x(5xy)+y(5xy)−5(5xy)
=5x2y+5xy2−25xy
(iii) p×(6p2−7p+5)=p(6p2)−p(7p)+p(5)
=6p3−7p2+5p
(iv) Given 4p2q2(p2−q2)=4p2q2(p2)−4p2q2(q2)
4p2+2q2−4p2q2+2 (Since, when the bases are same then exponents will be added)
=4p4q2−4p2q4
(v) Given (a+b+c)×abc=a(abc)+b(abc)+c(abc)
=a2bc+ab2c+abc2
Thus, the table can be completed as follows.
first expression second expression product(i)ab+c+dab+ac+ad(ii)x+y−55xy5x2y+5xy2−25xy(iii)p6p2−7p+56p3−7p2+5p(iv)4p2q2p2−q24p4q2−4p2q4(v)a+b+cabca2bc+ab2c+abc2