Complete the table of the product by multiplying the first monomial present along the row with the second monomial present along the column.
Nos.First Monomial→second Monomial↓a2b2cd2−5p2(i)−ab−a3b3−abcd2(ii)−cd−a2b2cd−c2d3(iii)abcda3b3cdabc2d3
5abp2, 5cdp2, -5abcdp2
(i). (-ab) × (-5p2) = 5abp2
(ii). (-cd) × (-5p2) = 5cdp2
(iii). (abcd) × (-5p2) = -5 abcdp2
Nos.First Monomial→Second Monomial↓a2b2cd2−5p2(i)−ab−a3b3−abcd25abp2(ii)−cd−a2b2cd−c2d35cdp2(iii)Abcda3b3cdabc2d3−5 abcdp2