The correct option is B 12−2i
Given,
|z+1|=z+2(1+i)
Let z=x+iy where x,y∈R, then
|(x+iy)+1|=(x+iy)+2(1+i)⇒√(x+1)2+y2=(x+2)+i(y+2)
Equating real part and imaginary part from both the sides, we get
y+2=0⇒y=−2…(i)
and √(x+1)2+y2=x+2
⇒√(x+1)2+(−2)2=x+2
(from equation (i))
⇒x2+2x+5=(x+2)2
⇒x2+2x+5=x2+4x+4
⇒x=12
Hence, required complex number is z=12−2i.