Complex numbers z1,z2,z3 are the vertices A, B, C, respectively, of an isosceles right-angled triangle with right angle at C
Then prove that (z1−z2)2=2(z1−z3)(z3−z2).
Open in App
Solution
By coni method z2−z3z1−z3=BCACeiπ2 ⇒(z2−z3)(z1−z3)=i[∵BC=AC]⇒(z1−z2)=i(z1−z3) Squaring both sides (z2−z3)2=−(z1−z3)2⇒z22+z23−2z2z3=−−z21−z23+2z1z3⇒z21+z22−2z1z2=2z1z3+2z2z3−2z1z2−2z23(z1−z2)2=2(z1−z3)(z3−z2)