from the given conditions .we see that 45∘ <θ4 < 67∘30 so that tan(θ4)>0 and 90∘<θ2<135∘∴tan(θ2)=−ive tanθ2=√(1−cosθ1+cosθ)=−
⎷⎛⎜
⎜
⎜⎝1+451−45⎞⎟
⎟
⎟⎠=−3 ∴ Now tanθ2=2t1−t2=−3wheret=tanθ4 ∴3t2−2t−3=0∴t=2±√(4+36)6 ∴t=tanθ4=1+√103astanθ4 is + ive