wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Compute the adjoint of each of the following matrices:

(i) 122212221

(ii) 125231-111

(iii) 2-1342504-1

(iv) 20-1510113

(v) 123050243

Verify that (adj A) A = |A| I = A (adj A) for the above matrices.

Open in App
Solution

(i) A=122212221Now,C11=1221=-3, C12=-2221=2 and C13=2122=2C21=-2221=2, C22=1221=-3 and C23=-1222=2C31=2212=2, C32=-1222=2 and C33=1221=-3adjA=-3222-3222-3T=-3222-3222-3and (adjA)A=500050005Now, A=5AI=500050005and A(adjA)=500050005Thus, (adjA)A=AI= A(adjA)(ii) B=125231-111Now,C11=3111=2, C12=-21-11=-3 and C13=23-11=5C21=-2511=3, C22=15-11=6 and C23=-12-11=-3C31=2531=-13, C32=-1521=9 and C33=1223=-1adjB=2-3536-3-139-1T=23-13-3695-3-1(adjB)B=210002100021and B=21BI=210002100021and B(adjB)=210002100021Thus, (adjA)A=AI= A(adjA)(iii) C=2-1342504-1Now,C11=254-1=-22, C12=-450-1=4 and C13=4204=16C21=--134-1=11, C22=230-1=-2 and C23=-2-104=-8C31=-1325=-11, C32=-2345=2 and C33=2-142=8adjC=-2241611-2-8-1128T=-2211-114-2216-88(adjC)C=000000000and C=0CI=000000000and CadjC=000000000Thus, (adjA)A=AI= A(adjA)(iv) D=20-1510113Now,C11=1013=3, C12=-5013=-15 and C13=5111=4C21=-0-113=-1, C22=2-113=7 and C23=-2011=-2C31=0-110=1, C32=-2-150=-5 and C33=2051=2adjD=3-154-17-21-52T=3-11-157-54-22(adjD)D=200020002and D=2DI=200020002and D(adjD)=200020002Thus, (adjA)A=AI= A(adjA)(v) E=123050243Now,C11=5043=15, C12=-0023=0 and C13=0524=-10C21=-2343=6, C22=1323=-3 and C23=-1224=0C31=2350=-15, C32=-1300=0 and C33=1205=5adjE=150-106-30-1505T=156-150-30-1005(adjE)E=-15000-15000-15E=-15EI=-15000-15000-15and E(adjE)=-15000-15000-15Thus, (adjA)A=AI= A(adjA)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Binary Operations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon