wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Compute the derivative of tanx.

Open in App
Solution

Let f(x)=tanx
We know that f(x)=limh0f(x+h)f(x)h
f(x)=limh0tan(x+h)tanxh
f(x)=limh01h(tan(x+h)tanx)
f(x)=limh01h(sin(x+h)cos(x+h)sinxcosx)

f(x)=limh01h(cosxsin(x+h)cos(x+h)sinxcos(x+h)cosx)
f(x)=limh01h(sin(x+h)cosxcos(x+h)sinxcos(x+h)cos x)

Using {sin(AB)=sinAcosBcosAsinB}
f(x)=limh01h(sin(x+hx)cos(x+h)cosx)
f(x)=limh01h((sinh)cos(x+h)cosx)
f(x)=limh0sinhh1cos(x+h)cosx
f(x)=limh0sinhh×limh01cos(x+h)cosx
f(x)=1×limh01cos(x+h)cosx
f(x)=limh01cos(x+h)cosx
f(x)=1cos(x+0)cosx
f(x)=1cosxcosx
f(x)=1cos2x
f(x)=sec2x
Hence, f(x)=sec2x

flag
Suggest Corrections
thumbs-up
2
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon