wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Compute the mean deviation from the median and from the mean for the following distribution of the scores of 50 college students:
Scores 140−150 150−160 160−170 170−180 180−190 190−200
Frequency 4 6 10 18 9 3

Open in App
Solution

Mean Deviation from Median
Scores
(X)
Frequency
(f)
Cumulative Frequency
(c.f.)
Mid -Values
(m)
Deviation from Median
dM=m-MdM=m-172.78
f×dM=fdM
140−150 4 4 145 27.78 111.12
150−160 6 10 155 17.78 106.68
160−170 10 20 165 7.78 77.8
170−180 18 38 175 2.22 39.96
180−190 9 47 185 12.22 109.98
190−200 3 50 195 22.22 66.66
N=Σf = 50 Σf|dM|=512.2

Median class is given by the size of N2thitem, i.e. 502th item, which is 25th item.

This corresponds to the class interval of 170-180, so this is the median class.

Median=l1+N2-c.f.f×ior, Median=170+25-2018×10or, Median=170+5018Median=172.78Mean deviation from Median M.DM=ΣfdMΣf=512.250=10.244 marks
Mean Deviation from Mean
Scores
(X)
Frequency
(f)
Mid -Values
(m)
fm Deviation from Mean
dX=m-XdX=m-171.2
f×dX=fdX
140−150 4 145 580 26.2 104.8
150−160 6 155 930 16.2 97.2
160−170 10 165 1650 6.2 62
170−180 18 175 3150 3.8 68.4
180−190 9 185 1665 13.8 124.2
190−200 3 195 585 23.8 71.4
Σf = 50 Σfm=8560 ΣfdX=528

Mean (X¯)=ΣfmΣf=856050=171.2Mean deviation M.DX¯=ΣfdXΣf=52850=10.56 marks

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Mean Deviation about Median
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon