Compute the mean deviation from the median of the following distribution :
Class0−1010−2020−3030−4040−50Frequency51020510
ClassFrequencyfiCumulative frequencyMid-values xi|di|=|xi−25|fi|di|0−105552010010−201015151010020−302035250030−4054035105040−5010504520200N=∑5i=1fi=50∑5i=1fi|di|=450
Here, N = 50
⇒N2=25
The cumulative frequency greater than N2=25 is 35 and the corresponding class is 20 -30.
Therefore the median class is 20 - 30.
∴l=20,f=20,F=15,N=50,h=10
∴ Median =l+(N2−F)f×h
=20+(502−15)20×=20+(25−15)20×10=25
Mean deviation from the median =∑5i=1fi|di|N=45050=9