wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Compute the value of x in each of the following figures:

Open in App
Solution

(i)

AB = AC (Given)

∠1 = 50° (Angles opposite to equal sides are equal)

Now, we have 1 + x = 180° (Linear angles)

x = 180° 50°

∴ x = 130°

(ii)

∠1 + 106° = 180° (Linear angles)

∠1 = 180° 106°

∠1 = 74° … (1)

∠2 + 130° = 180° (Linear angles)

∠2 = 180° 130°

∠2 = 50° … (2)

∠1 + 2 + x = 180° (Sum of the angles of a triangle)

74° + 50° + x = 180° (From (1) and (2))

x = 180° 124°

∴ x = 56°

(iii)

∠2 + 100° = 180° (Linear angles)

∠2 = 180° 100°

∠2 = 80° … (1)

∠1 = 65° … (2) (Vertically opposite angles)

∠1 + 2 + x = 180° (Sum of the angles of a triangle)

65° + 80° + x = 180° (From (1) and (2))

x = 180° 145°

∴ x = 35°

(iv)

∠2 + 112° = 180° (Linear angles)

∠2 = 180° 112°

∠2 = 68° … (1)

∠1 + 120° = 180° (Linear angles)

∠1 = 180° 120°

∠1 = 60° … (2)

∠1 + 2 + x = 180° (Sum of the angles of a triangle)

60° + 68° + x = 180° (From (1) and (2))

x = 180° 128°

∴ x = 52°

(v)

AB = AC (Given)

∠1 = 20° (Angles opposite to equal sides are equal)

In ΔABC, A + B + C = 180° (Sum of the angles of a triangle)

20° + 2 + 20° = 180° (Sum of the angles of a triangle)

∠2 = 180° 40°

∠2 = 140°

Also, 2 + x = 180° (Linear angles)

x = 180° 140°

∴ x = 40°


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Construct Triangle When Its Base, Difference of the Other Two Sides and One Base Angle Are Given
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon