Conisder the complex valued funciton f(z)=2z3+b|z|3 where z is a complex variable. The value of b for which the function f(z) is analytic is
Let z=x+jy
⇒f(z)=2(x+jy)2+b|(x+jy)|3
⇒f(z)=2[x3+3x2jy−3xy2−jy3]+b(x2+y2)3/2
⇒f(z)=2(x3−3xy2)+b(x2+y2)3/2+j[6x2y−2y3]
Let f(z)=u+jv
u=2(x3−3xy2)+b(x2+y2)3/2
⇒∂v∂y=6x2−6y2
Now f(z) to be analytic
∂u∂x=∂v∂y
and this is true only when,
b=0