The correct option is B (−3)k−(−5)k
ak=−8a1−1−15ak−2
Consider k−2=1,k−1=n and k=n2
n2=−8n−15 [Using characteristice equation method]
n2+8n+15=0
n2+5n+3n+15=0
n(n+5)+3(n+5)=0
(n+3)(n+5)=0
So, n=−3 and −5
n1=(−3)1C1+(−5)1C2
=(−3)0C1+(−5)0C2=0
⇒ C1+C2=0 ...(1)
a1=(−3)1C1+(−5)1C2=2
⇒ −3C1+−5C2=2 ...(2)
Solving equation (1) and (2), we get CC1=1 and C2=−1
So, a4=(−3)k (−5)1