We have, B0=⎡⎢⎣−4−3−310α4β3⎤⎥⎦
Since B0 is an involutory matrix, therefore B20=I.
Then, B20=⎡⎢⎣−4−3−310α4β3⎤⎥⎦⎡⎢⎣−4−3−310α4β3⎤⎥⎦
=⎡⎢⎣112−3β3−3α4α−4αβ−33α−3β−43β−12αβ−3⎤⎥⎦=⎡⎢⎣100010001⎤⎥⎦
⇒α=1,β=4 and |B0|=1
Also, Bn=adj(Bn−1)
For n=1,
B1=adj(B0)=|B0|⋅B−10
⇒B1=B0
Similarly, B2=B0 and so on.
Now, det(Bαβ0+Bαβ1+Bαβ2+⋯+Bαβ10)
=det(B40+Bαβ0+B40+⋯+B40)
=det(11I)=113=1331