The correct options are
B (p2,p)
C (p2,−p)
Focus of the parabola y2=2px is (p2,0)
∴ center of the circle is (p2,0)
Radius of the circle is (x−p2)2+(y−0)2=p2 ............(1)
Solving eqn(1) and y2=2px then
(x−p2)2+2px=p2
On expanding, we get
⇒x2+p24−px+2px=p2
⇒x2+px=3p24
⇒4x2+4px=3p2
On factorising , we get
⇒4x2+4px−3p2=0
⇒(2x+3p)(2x−p)=0
⇒2x=p,2x=−3p or x=p2,−3p2
∴ when x=p2 we have y2=2px=2p(p2)=p2
When x=−3p2 we have y2=2px=2p(−3p2)
⇒y=√−3p2 is imaginary which is impossible.
∴y2=p2
⇒y=±p
∴ points of intersection are (p2,p) and (p2,−p)