The correct option is C (p2,−p)
The focus of the parabola y2=2px is (p2,0) and directrix is x=−p2.
∴ Centre of circle is (p2,0)
and radius =p2+p2=p
∴ Equation of circle is (x−p2)2+y2=p2
Solving with y2=2px, we get
(x−p2)2+2px−p2=0
⇒4x2+8px−4px−3p2=0
⇒4x2+4px−3p2=0
⇒4x2+6px−2px−3p2=0
⇒(2x−p)(2x+3p)=0
⇒ x=p2 or −3p2
For x=p2,
y2=2p×p2
⇒y=±p
For x=−3p2,
y2=2p×−3p2=−6p2 (not possible)
∴ Required points are (p2,±p)