The correct option is A 4
Given, X(ejω)=11−e−jω⎛⎜
⎜⎝sin32ωsinω2⎞⎟
⎟⎠+5πδ(ω);−π≤ω≤π
X1(ejω)=sin32ωsinω2
X1(ejω)=IDTFT⟷x1[n]
sin32ωsinω2=IDTFT⟷x1[n]
sin32ωsinω2=IDTFT⟷{1,|n|≤10,|n|>1
Using the accumulation property,
∑nk=−∞x1(k)IDTFT↔11−e−jωX1(ejω)+πX1(ej0)∑∞k=−∞δ(ω−2π)
Therefore in the range −π<ω≤π
∑nk=−∞x1(k)IDTFT⟷11−e−jωX1(ejω)+3πδ(ω)
Also in the range −π<ω≤π
1FT⟷2πδ(ω)
∴ In the range −π<ω≤π
x[n]=1+∑nk=−∞x1[k]DTFT⟷11−e−jωX1(ejω)+5πδ(ω)
∴ The discrete signal x[n] may be expressed as
x[n]=1+∑nk=−∞x1[k]=⎧⎪⎨⎪⎩1,n≤−2n+3,−1≤n≤14,n≥2
x[n] at n=3 is x[3]=4