The correct option is D 1311
f(z)=z12+2⋅z11+3⋅z10+...+12⋅z+13
f(z)⋅1z=z11+2⋅z10+...+11z+12+13z––––––––––––––––––––––––––––––––––––––––––––––––
f(z)(1−1z)=z12+z11+...+1−13z
⇒f(z)(z−1z)=z13−1z−1−13z
⇒f(z)=z(z13−1)(z−1)2−13z−1
For α=cos2π13+isin2π13,
1,α,α2,...,α12 are the 13 roots of unity.
∴f(z)=131−z (∵z13=1)
⇒f(α)⋅f(α2)⋯f(α12)=131−α⋅131−α2⋯131−α12=(13)12(1−α)(1−α2)⋯(1−α12)
As z13=1
⇒limz→1(z−α)(z−α2)⋯(z−α12)=limz→1z13−1z−1⇒limz→1(z−α)(z−α2)⋯(z−α12)=13
Hence,
f(α)f(α2)f(α3)…f(α12)=1311