Given f:R+→(−1, ∞]
f(x)=5x2+2x−1
For f is to invertible, it should be both one-one and onto function.
For one-one,
f(x1)=f(x2)
⇒5x21+2x1−1=5x22+2x2−1⇒5(x21−x22)+2(x1−x2)=0
⇒(x1−x2)(5x1+5x2+2)=0
⇒x1=x2
∵5x1+5x2+2≠0 as x1,x2∈R+
So, f is one-one.
For onto,
y=5x2+2x−1
⇒y+15=x2+25x⇒y+15=(x+15)2−125⇒5y+625=(x+15)2⇒√5y+625=(x+15)⇒√5y+625−15=x⇒x=√5y+6−15
∴∀ y∈(−1, ∞], the domain of f(x) is x∈R+.
So, f(x) is onto.
Since, f is both one-one and onto. So, it is invertible.
f−1(y)=√5y+6−15
∴f−1(x)=15(√5x+6−1)