The correct option is D If g(x)=x2, then number of Solutions of f(x)=g(x) is 1.
f(x)f(y)+f(3x)f(3y)=2f(xy), f(3)=1
Let x=y=1
⇒f(1)2+1=2f(1)⇒(f(1)−1)2=0⇒f(1)=1
Let y=1
⇒f(x)+f(3x)=2f(x)⇒f(x)=f(3x)
Let y=3x
⇒f(x)⋅f(3x)=1⇒f(x)=1
It is a constant function.
f(2)f(1)+f(2)=11+1=12
Here f(−x)=f(x) but x∈R+. So, f(x) will not be an even function.
Now,
f(x)=g(x)⇒x2=1⇒x=1(∵x>0)
Hence, it has only one solution.