Consider a function of the form f(x)=αe2x+βex−γx, where α,β,γ are independent of x and f(x) satisfies the following conditions : f(0)=−1,f′(ln2)=30 and ln4∫0(f(x)+γx)dx=24. Then the value of (α+β+γ) is
Open in App
Solution
f(x)=αe2x+βex−γx f(0)=α+β ⇒α+β=−1⋯(1)
and f′(x)=2αe2x+βex−γ ⇒f′(ln2)=2αe2ln2+βeln2−γ ⇒8α+2β−γ=30⋯(2)