The correct option is
D (0∘,15∘)Given pair of line
λx2−10xy+12y2+5x−16y−3=0
on comparing above eq with general form of pair of eq we get
a=λ,h−5,b=12,g=52,f=−8,c=−3
Given eq is pair of eq so
abc+2fgh−af2−bg2−ch2=0
λ×12×(−3)+2(−8)(52)(−5)−λ×64−12(254)−(−3)(25)=0
−36λ+200−64λ−75+75=0
−100λ+200=0
λ=2
eq of pair becomes
2x2−10xy+12y2+5x−16y−3=0
2x2−(10y−5)x+(12y2−16y−3)=0
x=10y−5±√(10y−5)2−8(12y2−16y−3)4
4x=10y−5±√100y2+25−100y−96y2+128y+24)
4x=10y−5±√4y2+28y+49)
4x=10y−5±√(2y+7)2
4x=10y−5±(2y+7)
4x=10y−5+2y+7 or 4x=10y−5−(2y+7)
4x−12y−2=0 or 4x−8y+12=0
2x−6y−1=0 or 2x−4y+6=0
L1:2x−6y−1=0
L2:2x−8y−6=0
Slope of line L1,L2 m1=13 and m2=14
tanθ=∣∣∣m1−m21+m1m2∣∣∣
tanθ=∣∣
∣
∣
∣∣13−141+1314∣∣
∣
∣
∣∣
tanθ=113
∴θϵ(00,150)