The correct option is D The ionization of this element is 8.27 eV
Given that,
λ=1500 p2p2−1=15001−1p2
(A) The least energetic photon corresponds to the transition from n=2→n=1.
So, substituting p=2 ,
⇒λmax=15001−122=43×1500˚A
⇒λmax=2000˚A
The most energetic photon corresponds to the transition from n=∞→n=1. So, p=∞,
⇒λmin=15001−1∞2=1500˚A
Now,
λ2→1=15001−14=2000˚A
⇒ΔE2→1=hcλ2→1=124002000eV=6.2 eV
λ3→1=15001−19=98×1500˚A
⇒ΔE3→1=1240098×1500eV=7.35 eV
Simlarly,
ΔE4→1=124001615×1500eV=7.75 eV
Given that E1=0, From the above data,
E2=6.2 eV
E3=7.35 eV
E4=7.75 eV
⇒E4−E3=0.40 eV
So, option B and C are correct.
The ionization energy is the energy required to take an electron from n=1→n=∞
Eion=hcλmin=124001500 eV=8.27 eV
Hence, all the given options are correct.