Consider a parabola y2=4x and F be its focus. Let A1(x1,y1),A2(x2,y2),A3(x3,y3),...,An(xn,yn) be n points on the parabola such that xk,yk>0 and ∠OFAk=kπ2n. If limn→∞1nn∑k=1FAk=Pπ, then the value of P is
Open in App
Solution
Slope of FAk is yk−0xk−1=−tanθk ⇒xk=1−yktanθk
We know that y2k=4xk ⇒y2k=4(1−yktanθk) ⇒y2k+(4cotθk)yk−4=0 ⇒yk=−4cotθk±√16cot2θk+162 =−4cotθk+4cosecθk2,−4cotθk−4cosecθk2 =2(1−cosθksinθk),−2(1+cosθksinθk)
yk=2tanθk2,−2cotθk2 We know θk=kπ2n≤π2 and (xk,yk) is in first quadrant so, yk=2tanθk2 ⇒4tan2θk2=4xk ⇒xk=tan2θk2 ⇒FAk=√(xk−1)2+(yk)2⇒FAk=√(xk−1)2+4xk⇒FAk=(xk+1)⇒FAk=1+tan2θk2⇒FAk=sec2θk2=sec2kπ4n