The equivalent circuit can be drawn as shown. Applying Kirchhoff's law for the two loops,
(i−i1)RC+iR=ε (i)
qC=RC(i−i1) (ii)
Eliminating i between (i) and (ii), we get
qC=[1+RRC]+i1R=ε
For capacitor C, dqdt=i1
dqdt=CE−q((l+α)RC(whereα=RRC)
Solving, we get
q=EC1+α(1−e−t(1+α)/RC)
Adding (i) and (ii), we get
QC+iR=E or I=CE−qRC
Substituting for q, we get
I=ER[1−11+α(1−e−t(1+α)/RC)](whereα=RRC)