The correct option is A a=2927,b=9427
f(x)=ax3+bx2+x+23
∴(x+3) is factor of f(x).
By factor theorem,
f(−3)=0
⇒a(−3)3+b(−3)2+(−3)+23=0
⇒−27a+9b−73=0
⇒−27a+9b=73
⇒3(−9a+3b)=73
⇒−9a+3b=79
∴3b=79+9a.......(1)
When f(x) is divided by (x+2), remainder is 4.
By remainder theorem,
f(−2)=4
⇒a(−2)3+b(−2)2+(−2)+23=4
⇒−8a+4b−43=4
⇒−24a+12b−4=12
⇒−24a+12b=16⇒−6a+3b=4
∴3b=4+6a ...........(2)
From (1) and (2), we get
3b=79+9a and 3b=6a+4
79+9a=6a+4
⇒9a−6a=4−79⇒3a=299
∴a=2927
from (1), we get
3b=79+9a=79+9×2927
⇒3b=7+879⇒3b=949
∴b=9427
So, the correct answer is option (a).