x(t)={ej10t for |t|≤10 for|t|>1 Its Fourier Transform is
Since, x(t)={ej10tfor|t|≤10for|t|>1 as X(ω)=∫∞−∞x(t)e−jωtdt So, X(ω)=∫1−1ej10te−jωtdt=∫1−1ejt(10−ω)dt =1j(01−ω)[ej(10−ω)−e−j(10−ω)] X(ω)={2sin(ω−10)(ω−10)}