wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Consider a source m(t), whose amplitude statistics are as follows:

fm(m)=⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪1/4;1m11/12;4m11/12;1m40;Otherwise

The message is passed through a three bit quantize having uniform step size of 1 V. Reconstruction levels of the quantizer are mid points of the decision boundaries. Then the value of signal to quantization noise is equal to

A
9.77 dB
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
25.28 dB
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
16.43 dB
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
6.85 dB
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C 16.43 dB
To create an optimum qunatize of 3-bits all the masssage symbols should be equiprobable thus, the area under each quantized value must be same


Thus, for a 3-bit quantizer we need 8 levels. From the graph we can observe that the quantization level can be choosen as ±12,±32,±52 and ±72.
Thus signal power, σ2m=44m2fm(m) dm
=2[[14m33]10+[112.m33]41]=113 Watts
Quantized noise power,
σ2q=2[10(m12)2×14dm+21(m32)2×112dm+32(m52)2×112dm+41(m72)2×112dm]
=2[141/21/2λ2dλ+1121/21/2λ2dλ+1121/21/2λ2dλ+121/21/2λ2dλ+1121/21/2λ2dλ]
=1/21/2λ2dλ=21/20λ2dλ=112
(SNR)q=σ2mσ2n=11/31/12=44
(SNR)q(dB)=10 log10(44)=16.43 dB

flag
Suggest Corrections
thumbs-up
0
similar_icon
Similar questions
View More
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Intensity of Sound
PHYSICS
Watch in App
Join BYJU'S Learning Program
CrossIcon