According to question:........................
cotθ−cotA=cotB+cotC
weknowthat:
⇒cosθsinθ−cosAsinA=cosBsinB+cosCsinC
⇒sinAcosθ−sinθcosAsinθsinA=sinCcosB+sinBcosCsinBsinC
⇒sin(A−θ)sinθsinA=sin(C+B)sinBsinC−−−−−−−−−(1)
| Byusingformula:sin(A+B)=sinAcosB+cosAsinB
Nowweknowthat:ABCistriangle,
⇒A+B+C=1800
⇒B+C=1800−A
∴sin(B+C)=sin(1800−A)
sin(B+C)=sinA
Nowsubstituteinequ(i).....
⇒sin(A−θ)=sinAsinBsinC×sinθsinA
sin(A−θ)=sin2AsinθsinBsinC−−−−−−−−−−(2)
similerlywefindas................
⇒sin(B−θ)=sin2BsinθsinBsinC−−−−−−−−(3)
⇒sin(C−θ)=sin2CsinθsinBsinC−−−−−−−−(4)
nowmultiplyingequ(2),(3)&(3)⇒sin(A−θ)sin(B−θ)sin(C−θ)=sin2AsinθsinBsinC×sin2BsinθsinBsinC×sin2CsinθsinBsinC
=sin3θ