wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Consider a triangle ABC such that cotA+cotB+cotC=cotθ, then sin(Aθ)sin(Bθ)sin(Cθ) is,

A
tan3θ
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
cot3θ
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
sin3θ
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
cos3θ
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C sin3θ
According to question:........................

cotθ=cotA+cotB+cotC

cotθcotA=cotB+cotC

weknowthat:

cosθsinθcosAsinA=cosBsinB+cosCsinC

sinAcosθsinθcosAsinθsinA=sinCcosB+sinBcosCsinBsinC

sin(Aθ)sinθsinA=sin(C+B)sinBsinC(1)

| Byusingformula:sin(A+B)=sinAcosB+cosAsinB

Nowweknowthat:ABCistriangle,

A+B+C=1800

B+C=1800A

sin(B+C)=sin(1800A)

sin(B+C)=sinA

Nowsubstituteinequ(i).....

sin(Aθ)=sinAsinBsinC×sinθsinA

sin(Aθ)=sin2AsinθsinBsinC(2)

similerlywefindas................

sin(Bθ)=sin2BsinθsinBsinC(3)

sin(Cθ)=sin2CsinθsinBsinC(4)

nowmultiplyingequ(2),(3)&(3)sin(Aθ)sin(Bθ)sin(Cθ)=sin2AsinθsinBsinC×sin2BsinθsinBsinC×sin2CsinθsinBsinC

=sin3θ


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Transformations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon