Given that V=KP2
∴V1P12=V2P22
Since, air is assumed as ideal gas,
V1=(1.45×100029)×8.3×3001.5×105=0.83m3
V2=(3.5×105)2(1.5×105)2×0.83=4.52m3
Using ideal gas equation,
P2V2=nRT2
T2=(3.5×105)×4.52(1.45×100029)×8.3=3812K
Change in internal energy, ΔU=nCvΔT=(1.45×100029)×(52×8.3)×(3812−300)=3.6×106J
Hence, option A is correct.