Let P(z) be any point on the ellipse. Then equation of the ellipse is
|z−z1|+|z−z2|=|z1−z2|e (1)
If we replace z by z1 or z2, L.H.S. of (1) becomes |z1−z2|. Thus, for any interior point of the ellipse, we have |z−z1|+|z−z2|<|z1−z2|e
It is given that origin is an interior point of the ellipse
|0−z1|+|0−z2|<|z1−z2|e
⟹e∈(0,|z1−z2||z1|+|z2|)
Ans: 1