7sin3x−2sin9x=sec2θ+4 cosec2θ
⇒7sin3x−2(3sin3x−4sin33x)=(1+tan2θ)+4(1+cot2θ)
Let sin3x=y,y∈[−1,1]
Then, y(8y2+1)=9+(tanθ−2cotθ)2 ⋯(1)
L.H.S. will be minimum at y=−1
minimum value =−9
L.H.S. will be maximum at y=1
maximum value =9
So, equation (1) has a solution only if
max of L.H.S. = min of R.H.S.
∴sin3x=1=sin(π2)
⇒x=π6 (minimum positive root)
Or
sin3x=1=sin(−3π2)
⇒x=−π2 (maximum negative root)
(minimum positive root)−(maximum negative root)
=π6+π2=2π3
So, 15π((minimum positive root)−(maximum negative root))=15π×2π3=10