The correct option is D 0.88
dxdt=4t+4=f(t,x)
h=Δt=0.2,t0=0
k1=Δtf(0,x0)=0.2(0+4)=0.8
k2=f(t0+Δt2,x0+12k1)Δt
=[f(0.1,x0+0.4)]Δt
=[4(0.1)+4](0.2)
=0.88
k3=f(t0+Δt2,x0+12k2)Δt
=[f(0.1,x0+0.44)](0.2)
=[4(0.1)+4](0.2)
=0.88
k4=f(t0+Δt,x0+k3)Δt
=[f(0.2,xo+0.88)]Δt
=[4×0.2+4](0.2)
=0.96
x1=x(0.2)
=x0+16[k1+2k2+2k3+k4]
=x0+16[0.8+2×0.88+2×0.88+0.96
=x0+0.26[4+2×4.4+2×4.4+4.8]
x1−x0=0.88
Increment in x is 0.88