The correct option is B (−∞,−7−4√3]∪[−7+4√3,∞)
Given R(x) is the remainder when unkown polynomial is divided by (x−3)(x−4).
Clearly, degree of R(x) will be less than 2 (degree of divisor).
So, let R(x)=ax+b
Given R(3)=2
⇒3a+b=2 ....(1)
Also, R(4)=1
⇒4a+b=1 ....(2)
Solving (1) and (2), we get
a=−1,b=5
So R(x)=−x+5
Now, let y=−x+5x2−3x+2
⇒yx2+x(−3y+1)+(2y−5)=0
⇒y2+14y+1≥0 (Since x is real, D≥0)
⇒(y+7+4√3)(y+7−4√3)≥0
⇒y∈(−∞,−7−4√3]∪[−7+4√3,∞)