wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Consider complex number z=1isinθ1+icosθ
The value of sin2θ for argument of 45 degree.

Open in App
Solution

z=1isinθ1+icosθ
argz=arg(1isinθ)arg(1icosθ)
π4=tan1(sinθ)tan1cosθ
tan1sinθ+tan1cosθ=π4
tan1(sinθ+cosθ1sinθcosθ)=π4
sinθ+cosθ1sinθcosθ=tanπ4=1
sinθ+cosθ+1sinθcosθ ( squaring both sides )
sin2θ+cos2θ+2sinθcosθ=1+sin2θ+cos2θ2sinθcosθ
1+2sinθcosθ=1+sin2θ+cos2θ2sinθcosθ
2sin2θ=4sin2θ+cos2θ4=sin22θ4
sin2θ=8
Hence, solved.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Differentiation
PHYSICS
Watch in App
Join BYJU'S Learning Program
CrossIcon