1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Standard Formulae - 1
Consider ∫ ...
Question
Consider
∫
x
tan
−
1
d
x
=
A
(
x
2
+
1
)
tan
−
1
x
+
B
x
+
C
,
where C is the constant of integration.
What is the value of B?
A
1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
1
2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
−
1
2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
1
4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is
C
−
1
2
Given ,
∫
x
tan
−
1
x
d
x
=
∫
d
d
x
(
x
2
2
)
tan
−
1
x
d
x
=
(
x
2
2
)
tan
−
1
x
−
∫
(
x
2
2
)
d
d
x
(
tan
−
1
x
)
d
x
=
(
x
2
2
)
tan
−
1
x
−
∫
(
x
2
2
)
1
x
2
+
1
d
x
=
(
x
2
2
)
tan
−
1
x
−
1
2
∫
x
2
x
2
+
1
d
x
=
(
x
2
2
)
tan
−
1
x
−
1
2
∫
(
1
−
1
x
2
+
1
)
d
x
=
(
x
2
2
)
tan
−
1
x
−
1
2
(
x
−
tan
−
1
x
)
+
C
=
1
2
tan
−
1
x
(
x
2
+
1
)
−
x
2
+
C
Hence
B
=
−
1
2
Suggest Corrections
0
Similar questions
Q.
Consider
∫
x
tan
−
1
x
d
x
=
A
(
x
2
+
1
)
tan
−
1
x
+
B
x
+
C
,
where C is the constant of integration.
What is the value of A?
Q.
equals
A.
x
tan
−1
(
x
+ 1) + C
B. tan
− 1
(
x
+ 1) + C
C. (
x
+ 1) tan
−1
x
+ C
D. tan
−1
x
+ C