The function provided is f( x )=9 x 2 +6x−5 for the range f: R + →[−5,∞) .
For the function to be invertible, the function should be one-one and onto.
Check whether the function is one-one.
f( a )=9 a 2 +6a−5
f( b )=9 b 2 +6b−5
Now,
f( a )=f( b ) 9 a 2 +6a−5=9 b 2 +6a−5 9 a 2 −9 b 2 +6a−6b=0 9( a 2 − b 2 )+6( a−b )=0
Further simplify.
3( a−b )( a+b )+2( a−b )=0 ( a−b )( 3a+3b+2 )=0
Now, ( a−b )=0 a=b
And ( 3a+3b+2 )=0 3a=−3b−2
f:R→[ −5,∞ ), So x∈R
Therefore, x is always positive. So, function is one-one.
Now, check whether the function is onto.
Consider a function y∈[−5,∞) , such that,
y=9 x 2 +6x−5 y= ( 3x+1 ) 2 −6 3x+1= y+6 ≥0 x= y+6 −1 3
As the particular value of the function exists in the range provided, so the function is onto.
Hence, the f function is one-one and onto, so f −1 exists.
( gof )( x )=g( f( x ) ) =g( 9 x 2 +6x−5 ) =g( ( 3x+1 ) 2 −6 ) = ( 3x+1 ) 2 −6+6 −1 3
( gof )( x )= 3x+1−1 3 =x
( fog )( y )=f( g( y ) ) =f( y+6 −1 3 ) = ( 3( y+6 −1 3 )+1 ) 2 −6 = ( y+6 ) 2 −6
( fog )( y )=y+6−6 =y
Therefore,
gof= I R fog= I [−5,∞)
So the function f is invertible.
y=9 x 2 +6x−5 y= ( 3x+1 ) 2 −6 3x+1= y+6 ≥0 x= y+6 −1 3
Further solve the above equation.
g( y )= y+6 −1 3 f −1 ( y )= y+6 −1 3
Thus, the inverse of the function is f −1 ( y )= y+6 −1 3 .