1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Integration by Partial Fractions
Consider f: R...
Question
Consider f : R
+
→ [−5, ∞) given by f(x) = 9x
2
+ 6x − 5. Show that f is invertible with
f
-
1
x
=
x
+
6
-
1
3
.
Open in App
Solution
Injectivity of f :
Let x and y be two elements of domain (R
+
), such that
f(x)=f(y)
⇒
9
x
2
+
6
x
-
5
=
9
y
2
+
6
y
-
5
⇒
9
x
2
+
6
x
=
9
y
2
+
6
y
⇒
x
=
y
As,
x
,
y
∈
R
+
So, f is one-one.
Surjectivity of f:
Let y is in the co domain (Q) such that f(x) = y
⇒
9
x
2
+
6
x
-
5
=
y
⇒
9
x
2
+
6
x
=
y
+
5
⇒
9
x
2
+
6
x
+
1
=
y
+
6
Adding 1 on both sides
⇒
3
x
+
1
2
=
y
+
6
⇒
3
x
+
1
=
y
+
6
⇒
3
x
=
y
+
6
-
1
⇒
x
=
y
+
6
-
1
3
∈
R
+
domain
⇒
f is onto.
So, f is a bijection and hence, it is invertible.
Finding f
-
1
:
Let
f
-
1
x
=
y
.
.
.
1
⇒
x
=
f
y
⇒
x
=
9
y
2
+
6
y
-
5
⇒
x
+
5
=
9
y
2
+
6
y
⇒
x
+
6
=
9
y
2
+
6
y
+
1
adding 1 on both sides
⇒
x
+
6
=
3
y
+
1
2
⇒
3
y
+
1
=
x
+
6
⇒
3
y
=
x
+
6
-
1
⇒
y
=
x
+
6
-
1
3
So,
f
-
1
x
=
x
+
6
-
1
3
[
from
1
]
Suggest Corrections
0
Similar questions
Q.
Consider
f
:
R
+
∈
[
−
5
,
∞
)
given by
f
(
x
)
=
9
x
2
+
6
x
−
5
. Show that
f
is invertible with
f
−
1
(
y
)
=
(
(
√
y
+
6
)
−
1
3
)
Q.
Consider
f
:
R
+
→ [−5,
∞
) given by
f
(
x
) = 9
x
2
+ 6
x
− 5. Show that
f
is invertible with
.