Given
f(x)=4x+33x+4For one-one function, we have
f(x1)=f(x2)⟹x1=x2
Thus, consider f(x1)=f(x2)
⟹4x1+33x1+4= 4x2+33x2+4
⟹12x1x2+16x1+9x2+12=12x1x2+9x1+16x2+12
⟹7x1=7x2
⟹x1=x2
∴ f(x) is one-one function.
For onto function:
Let f(x)=y
⟹4x+33x+4=y
⟹x= 3−4y3y−4
Domain of the above function is R−{43}, which is range of function f(x).
So, given function f(x) is onto.
Hence, given function f(x) is bijective.
Now, let us find the inverse of f(x)
Let the given function f(x) be y
⇒f(x)=4x+33x+4=y
So we get f−1(y)=x=3−4y3y−4
So the inverse of function f is f−1(x)=3−4x3x−4
Also, A=f−1(0)
⇒A=f−1(0)=−34
Given that f−1(x)=3−4x3x−4=2
⇒3−4x=6x−8
⇒B=x=1110
∴100×(A+B)=35