Consider f:R+→[−5,∞) given by f(x)=9x2+6x−5 show that f is ivnertible with f−1(y)=((√y+6)−13)
Here, function f:R+→[−5,∞) is given as f(x)=9x2+6x−5.
Let y be any arbitrary element of [−5,∞).
Let y=9x2+6x−5
⇒y=(3x+1)2−1−5=(3x+1)2−6⇒(3x+1)2=y+6
⇒3x+1=√y+6[as y≥−5⇒y+6≥0]
⇒x=√y+6−13
Therefore, f is onto, thereby range f=[−5,∞).
Let us define g:[−5,∞)→R+ as g(y)=√y+6−13
Now, (gof)(x)=g(f(x))=g(9x2+6x−5)=g((3x+1)2−6)
=√(3x+1)2−6+6−13=3x+1−13=x
and (fog)(y)=f(g(y))=f(√y+6−13)=[3(√y+6−13)+1]2−6
=(√y+6)2−6=y+6−6=y
Therefore, gof=IR+ and fog=I[−5,∞]
Hence, f is invertible and the inverse of f if given by
f−1(y)=g(y)=√y+6−13