wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Consider f(x)=12pcosx+p2=g(p); h(x)=g(p).g(p); k(p)=π0lng(p) dx for p,xR. Then which of the following is/are correct ?

A
k(x)=14k(x2)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
k(p) is an even function
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
g(p2)=h(x2)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
k(x)=12k(x2)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct option is D k(x)=12k(x2)
g(p)=12pcosx+p2
g(p)=1+2pcosx+p2
h(x)=g(p)g(p)
=(1+p2)24p2cos2x
=12p2(2cos2x1)+p4
h(x)=12p2cos2x+p4 ...(1)

Also, g(p2)=12p2cosx+p4 ...(2)
From eqn (1),
h(x2)=12p2cosx+p4
g(p2)=h(x2)

Now, k(p)=π0lng(p) dx
k(p)=π0ln(12pcosx+p2) dx ...(3)
Applying a0f(x)dx=a0f(ax)dx
k(p)=π0ln(1+2pcosx+p2) dx ...(4)
Adding eqn (3) and (4), we get
2k(p)=π0ln((1+p2)24p2cos2x)dx
2k(p)=π0ln(12p2cos2x+p4)dx
Put 2x=t2dx=dt
k(p)=142π0ln(12p2cost+p4)dt
k(p)=142π0ln(12p2cost+p4)dt
k(p)=k(p)

Hence, k(p) is even.

k(p)+k(p)=122π0ln(12p2cost+p4)dt
2k(p)=π0ln(12p2cost+p4)dt
2k(p)=π0lng(p2) dt=k(p2)
k(p)=12k(p2)
k(x)=12k(x2)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon