The correct option is D k(x)=12k(x2)
g(p)=1−2pcosx+p2
g(−p)=1+2pcosx+p2
h(x)=g(p)g(−p)
=(1+p2)2−4p2cos2x
=1−2p2(2cos2x−1)+p4
h(x)=1−2p2cos2x+p4 ...(1)
Also, g(p2)=1−2p2cosx+p4 ...(2)
From eqn (1),
h(x2)=1−2p2cosx+p4
∴g(p2)=h(x2)
Now, k(p)=π∫0lng(p) dx
⇒k(p)=π∫0ln(1−2pcosx+p2) dx ...(3)
Applying a∫0f(x)dx=a∫0f(a−x)dx
⇒k(p)=π∫0ln(1+2pcosx+p2) dx ...(4)
Adding eqn (3) and (4), we get
2k(p)=π∫0ln((1+p2)2−4p2cos2x)dx
⇒2k(p)=π∫0ln(1−2p2cos2x+p4)dx
Put 2x=t⇒2dx=dt
⇒k(p)=142π∫0ln(1−2p2cost+p4)dt
⇒k(−p)=142π∫0ln(1−2p2cost+p4)dt
∴k(p)=k(−p)
Hence, k(p) is even.
k(p)+k(−p)=122π∫0ln(1−2p2cost+p4)dt
⇒2k(p)=π∫0ln(1−2p2cost+p4)dt
⇒2k(p)=π∫0lng(p2) dt=k(p2)
∴k(p)=12k(p2)
⇒k(x)=12k(x2)