The correct option is D (2,10)
f(x)=1+2x∫0 et2⋅f(t2)(2t)√16−t4dt−0∫xf(t)⋅etsin−1(t2)dt
By using Newton-Leibnitz theorem, we have
f′(x)=ex⋅f(x)⋅2(2x)√16−16x4×2−(0−f(x)exsin−1x2)
⇒f′(x)=2xexf(x)√1−x4+f(x)exsin−1x2
⇒f′(x)f(x)=2xex√1−x4+exsin−1x2 ⋯(1)
Integrating both sides,
∫f′(x)f(x)dx=∫ex[sin−1x2+2x√1−x4]dx
⇒ln(f(x))=exsin−1(x2)+c[∵∫ex[f(x)+f′(x)]dx=exf(x)+c]
Now, f(0)=1⇒c=0
∴sin(e−xln(f(x)))=x2=h(x)
From (1), x∈(−1,1)
∴h(x)=x2 where x∈(−1,1)
h(x)+4x+5
=x2+4x+5
=(x+2)2+1=g(x) (say)
g′(x)=2(x+2)>0 for all x∈(−1,1)
⇒g(x) is increasing in (−1,1)
⇒g(x)∈(g(−1),g(1))
∴ Range of g(x) is (2,10)