wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Consider f(x)=1+2x0 et2f(t2)(2t)16t4dt0xf(t)etsin1(t2)dt and h(x)=sin(exln(f(x))).

If length of the tangent drawn to the curve y=h(x) at its point P(x0,y0) is 122, then (|x0|+|y0|) equals

A
14
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
12
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
34
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
54
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C 34
f(x)=1+2x0 et2f(t2)(2t)16t4dt0xf(t)etsin1(t2)dt
By using Newton-Leibnitz theorem, we have
f(x)=exf(x)2(2x)1616x4×2(0f(x)exsin1x2)
f(x)=2xexf(x)1x4+f(x)exsin1x2
f(x)f(x)=2xex1x4+exsin1x2

Integrating both sides,
f(x)f(x)dx=ex[sin1x2+2x1x4]dx
ln(f(x))=exsin1(x2)+c[ex[f(x)+f(x)]dx=exf(x)+c]

Now, f(0)=1c=0
sin(exln(f(x)))=x2=h(x)


h(x)=x2
h(x0)=2x0
LT=y0m 1+m2
x202x01+4x20=122
x20(1+4x20)=12
8x40+2x201=0(4x201)(2x20+1)=0
x0=±12, y0=14
|x0|+|y0|=34

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Differentiation under Integral Sign
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon