Consider f(x)=1+2x∫0et2⋅f(t2)(2t)√16−t4dt−0∫xf(t)⋅etsin−1(t2)dt and h(x)=sin(e−xln(f(x))).
If length of the tangent drawn to the curve y=h(x) at its point P(x0,y0) is 12√2, then (|x0|+|y0|) equals
A
14
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
12
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
34
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
54
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C34 f(x)=1+2x∫0et2⋅f(t2)(2t)√16−t4dt−0∫xf(t)⋅etsin−1(t2)dt By using Newton-Leibnitz theorem, we have f′(x)=ex⋅f(x)⋅2(2x)√16−16x4×2−(0−f(x)exsin−1x2) ⇒f′(x)=2xexf(x)√1−x4+f(x)exsin−1x2 ⇒f′(x)f(x)=2xex√1−x4+exsin−1x2
Integrating both sides, ∫f′(x)f(x)dx=∫ex[sin−1x2+2x√1−x4]dx ⇒ln(f(x))=exsin−1(x2)+c[∵∫ex[f(x)+f′(x)]dx=exf(x)+c]