The correct option is D f′( 1+4)=−45
f(x)=sin−1(1−2√x)+cos−1(2√√x−x)+tan−1(√2−1−√x1+√2x−√x)
Domain : x∈(0,1)
We know tan−1x−tan−1y=tan−1x−y1+xy for x,y>0
∴f(x)=sin−1(1−2√x)+sin−1(|1−2√x|)+tan−1(√2−1)−tan−1(√x)
f(x)=⎧⎪
⎪
⎪⎨⎪
⎪
⎪⎩2sin−1(1−2√x)+π8−tan−1√x,x∈(0,14]π8−tan−1√x,x∈(14,1)
f′(x)=⎧⎪
⎪
⎪
⎪
⎪⎨⎪
⎪
⎪
⎪
⎪⎩2√1−(1−2√x)2(−22√x)−11+x⋅12√x,x∈(0,14]−11+x⋅12√x,x∈(14,1)
∴f′( 1+4)=−11+14⋅12⋅12=−45
and f′( 1−4)=2√1−0(−2)−45=−245
Also, f′(x)<0 for all x∈(0,1)
∴f(x) is decreasing in (0,1)
Also, minimum value of f(x) does not exist.