Consider f(x) =tan−1(√1+sinx1−sinx),xϵ(0,π2). A normal to y=f(x) at x=π6 also passes through the point :
f(x)=tan−1√1+sinx1−sinx
=tan−1 ⎷(cosx2+sinx2)2(cosx2−sinx2)2
=tan−1(tan(π4+x2))
=π4+x2⇒f′(x)=12 and at x=π6,f(x)=π3
So, equation of normal is
y−π3=−2(x−π6)⇒y+2x=2π3