wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Consider
L=32012+32013+.....+33011
R=32013+32014+.....+33012
and I=301220123xdx.

Then

A
L+R<2I
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
L+R>2I
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
L+R=2I
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
LR=I
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B L+R>2I
L=32012+32013+.........33011......(i)R=32013+32014+.........33012......(ii)

I=301220123xdxf(x)=x13,h=1

n=bah=301220121=1000

I=ban[f(a)+f(a+h)+f(a+2h)+f(a+3h)..........f(a+(n1)h)]

I=10001000[f(2012)+f(2013)+f(2014)........f(3011)]

I=32012+32013+32014..........33011

2I=232012+232013...............233011

2I={32012+32013+32014..........33011}+{32013+32014..........33012}+3201233012

2I=L+R+3201233012

3201233012<0

2I<L+R

So option B is correct.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Harmonic Progression
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon