The correct options are
B (3a,2√3a)
C (a3,2a√3)
Let P be (at2,2at) and PN be normal
√32SP=PM, where M is foot of perpendicular from P upon axis of parabola
⇒√32(at2+a)=2at
⇒√3t2+√3=4t
⇒√3t2−4t+√3=0
⇒√3t2−3t−t+√3
⇒√3t(t−√3)−1(t−√3)=0
⇒(t−√3)(√3t−1)=0
∴t=√3 or t=1√3
So, P is (3a,2√3a) or (a3,2a√3)